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An elementary approach to quantum statistical problems (III)

Summary: The solution procedures discussed in Parts I and II essentially make use only of the existence of

chemical potential, its concentration and energy dependency. However, if cleverly applied, they can also be used

in the case of interaction between the dissolved, vaporized or adsorbed particles. For dissolved substances, this

will be demonstrated with the help of the Debye-Hückel theory of inter-ionic interaction. The van der Waal’s

equation will serve as the example for gases. For adsorbed substances, we will show the procedure in general.

Introduction

In all of our computational examples, we have mostly used two characteristics of the chemical
potential: the concentration dependency and the energy dependency expressed by two equations
which we have given names for the sake of convenience. These are the ”mass action formula”
µ(c) = µ0 + RT ln(c/c0) and the ”excitation formula” µ(ε) = µ(0) + ε/τ . The validity of the
first equation necessitates the absence of noticeable interaction between the particles distributed
in space. This only applies to ideal gases or ideal solutions, a state that can be approached by
sufficiently high dilution. Denser gases and more concentrated solutions are therefore excluded
from this treatment.

We know from previous experience how careful one must be with such conclusions. A spon-
taneous idea can be enough to enable us to jump a hurdle that seemed insurmountable before
(Figure 1). Stimulus for solving our problems can be gotten from totally different areas. In order
to calculate the deviation from ideal behavior of solved electrolytes, Debye and Hückel get by
with Boltzmann’s Principle and Poisson’s equation. All we need to do is to take the equivalent
steps for chemical potentials to achieve the same objective. An advantage for us here is that we
do not have to change from one level to another, i.e., from the statistical to the phenomenological.
Rather, we begin immediately with the quantity we are interested in at the end. To keep the math
uncomplicated, it is a good idea to study the formation of the ion clouds on flat boundary layers
– e.g. in analogy to the barometric equation – before going over to spherically symmetric clouds
around the ions.

The insight gained here can, in turn, be used to describe the behavior of real gases. We
choose a van der Waal’s gas as our example because the equation of state and the associated
physical model are familiar to every physicist and chemist, and therefore immediately comparable

Figure 1: An unconventional solution to a well-known problem



to our assumptions and results. Of course, if one knows how, one can avoid borrowing from
electrochemistry and go directly from ideal to real gases.

After having lost our shyness towards micro-systems in Part II, we are able to use these as
models for appropriate solution procedures. A base capable of taking several protons, Bs + i H →
[BsHi], can serve as a model for a surface having sites for adsorption where strong interactions exist
between the adsorbing particles. Nothing hinders us from considering Bs as a very large molecule
with correspondingly numerous adsorption sites. If we imagine these spaces distributed inside a
homogenous molecule instead of on its surface, we then have a model of a solution with strong
interaction between the dissolved particles. We will let this approach play out in an example of
surface chemistry. Transferring it to solutions shouldn’t present any real difficulties.

Double layers on electrode surfaces

At a charged surface with no charge current in an electrolyte solution, the solution forms a boundary
layer in which the potential ϕ(r) and the concentrations ci(r) of the various types of ions deviate
from the values ϕ(∞) and ci(∞) dominating far away in the interior of the solution. The distance
from the aforementioned flat surface is indicated by r (Figure 2).
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Figure 2: a) Ionic concentration c and electric potential ϕ in the surface layer of an electrode charged positively relative

to the solution. r is the distance from the electrode (r = 0 for the centers of the ions when they touch the electrode), z

is the charge number, F is the Faraday constant, R is the gas constant, T is the temperature, l is the shielding length.

For small voltages between the electrode and the interior of the solution, ϕ(0) − ϕ(∞) ¿ RT/F ≈ 25 mV, the c and

ϕ values exponentially approach the values for large r (∼ exp(−r/l)).

b) The field arising in the positive charge of the electrode surface ebbs in the excess negative charge of the boundary

layer so that the interior of the solution becomes field-free. The shading on the right symbolizes the charge density.

The boundary layer shields the solution electrically from the charged electrode surface: the
field arising there ebbs in the boundary layer. The greater the concentartion of ions of the so-
lution, the more effective the shielding will be and the thinner the boundary layer will be. The
ional concentration1 cι offers a natural measure of how ”ional” the solution is. Among the three
expressions

1In order to mark the quantities relating to (inter-)ionic interactions, we choose the index ι (lower case iota) which

should be carefully distinguished from index i. For historical reasons, instead of cι, most authors prefer the molar ionic

strength Ic = 1
2
cι which is half as large. In doing so, a factor of 2 is dragged into the formula. For practical reasons

(because of independence of pressure and temperature) the ional molality bι =
∑

i z2
i bi and respectively, the appropriate

molal ionic strength Ib = 1
2
bι, is preferred.
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i
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,
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i
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,
∑

i

z2
i ci

︸ ︷︷ ︸
cι

, ...

the first one expresses the total concentration of all components. The second one describes the
charge density ρ apart from the factor F−1. The third describes the ”ion-ness” of the solution.

In the following, only the simplest case of a double layer consisting of a charged electrode surface
and an oppositely charged diffuse boundary layer will be considered. We assume that all the ions
have unchanging solvation sheaths of the same diameter and are not adsorbed at the electrode
surface. To account for the potential energy in the electric field of an ion with a charge number
of zi, one must, as discussed before, add the term ziFϕ(r) to the appropriate chemical potential.
Then, based upon the mass action formula, we have:

µi(r) = µi(∞) + zi F ϕ(r) + R T ln
ci(r)
ci(∞)

if we choose ϕ(∞) = 0. As long as there are spatial differences in the potentials µi(r), the ions
will migrate and thereby change their concentrations ci(r). In a state of equilibrium, each of these
potentials has the same value µi everywhere. In this case, the two terms µi(r) and µi(∞) cancel
each other so that, by solving the equation for ci(r), we obtain the expression

ci(r) = ci(∞) · exp
(−zi F ϕ(r)

R T

)
≈ ci(∞) · exp

[
1− zi F ϕ(r)

R T

]
for ϕ(r) ¿ R T

zi F
.

The expression on the right results from the series expansion of the exponential function, if the
series is broken off after the linear term. This simplification of the calculation means that we must
limit ourselves to small voltages between the electrode and the solution, i.e., to ϕ(0) − ϕ(∞) ¿
RT/F .

In the boundary layer, even in equilibrium, the charges of the ions do not cancel, but cause a
space charge of the density ρ(r) = F

∑
zici(r). According to Poisson’s equation, this, in turn,

causes the curved shape of the electric potential. With the ci(r) values calculated above, we find:

− ∈ ∂2ϕ(r)
∂r2

= ρ(r)
︸ ︷︷ ︸
Poisson’s equation

=
∑

i

zi F ci(∞)

︸ ︷︷ ︸
ρ(∞) = 0

−
∑

i

z2
i ci(∞) · F 2

R T
︸ ︷︷ ︸

cι

· ϕ(r) .

(∈ = ∈r · ∈0 permittivity, ∈r relativ permittivity, ∈0 permittivity of vacuum, cι = cι(∞)).
ρ(∞) vanishes because the solution’s interior is electrically neutral. Using the abbreviations ϕ′′ =
∂2ϕ(r)/∂r2 and l−2 = cιF

2/∈RT , the equation above becomes:

ϕ′′ = l−2 · ϕ .

By taking the second derivative, one is easily convinced that the equation can be solved using ϕ =
a e±r/l, i.e., by ϕ′′ = l−2 a e±r/l, where a = ϕ(0). In our case, only the negative sign is useful in
the exponent because e+r/l diverges for r → ∞. With the expressions for ci(r) found above, with
ϕ(r) inserted, we arrive at the result represented in Figure 2:

ϕ(r) = ϕ(0) · e−r/l

ci(r) = ci(∞) ·
[
1− zi F ϕ0

R T
· e−r/l

]




for ϕ(0) ¿ R T/F

with l =
√
∈ R T/(cι F 2) .
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Figure 3: A diffuse boundary layer or ”ion cloud” forms

around an ion even in a dilute electrolyte solution. It is con-

fined inside by a sphere with a radius of d (d is the ionic di-

ameter) and its thickness is expressed by the shielding length

l. The deviation of the electric potential and the ionic con-

centrations from their average values in the interior of the

solution fall as ∼ exp(−r/l)/r with the distance r from the

center of the central ion. The shading in the ion cloud shows

the charge density in the plane of the figure. Only starting

at an ional concentration of 1 kmol m−3 will l ≈ d formally,

as seen in the figure, while l is many times greater in dilute

solutions.

We see that the deviations of the potential ∆ϕ = ϕ(r) − ϕ(∞) and of the ionic concentrations
∆ci = ci(r) − ci(∞) from the values inside the solution subside exponentially in the boundary
layer with the distance from the electrode surface. Here, the Debye length or, shielding length l,
represents a measure of the thickness of the boundary layer shielding the field.

Theory of interionic interaction

Debye and Hückel assumed that around every ion in a dilute electrolyte solution a spherically
symmetric boundary layer forms that shields the charge of the central ion. The ion concentrations
ci(r) and the electric potential ϕ(r) can be calculated as functions of the distance r from the center
of the central ion the same way as in the last section if analogous prerequisites are assumed. At this
point we will pass over the calculation that does not add anything essentially new (except for some
special mathematical features as a result of spherical symmetry). We will instead investigate, in a
somewhat simplified manner, the most important result of shielding for the chemical behaviour.

Without this shielding effect, the central ion, whose charge number and diameter are z and
d, respectively, would be surrounded by a long-range electric field. By forming a boundary layer
with the thickness l, calculated according to the equation mentioned in the last section, the field
effectively disappears beyond a distance of r = d + l, and its energy content ε along with it
(Figure 3). With the help of the formula for the capacity of a sphere with radius r, C = 4 π ∈ r,
and the equation for the energy of a capacitor with charge Q, E = 1

2 Q2/C, the result is ε =
1
2 z2 e2/{4 π ∈ (d + l)}. According to the excitation formula, this loss of energy manifests itself in
a reduction of the chemical potential µ of the corresponding type of ion by ε/τ :

µ = µ0 + R T ln
c

c0
− z2 e F

8 π ∈ (d + l)︸ ︷︷ ︸
µι

(Debye-Hückel-equation)

µι is the ionic excess potential which vanishes for uncharged, nonionic substances. If we take
the equation for shielding length l = l0 ·

√
c0/cι from the last section, with l0 = F−1

√
∈ R T/c0,

and at the same time keep to such a small ional concentration that d can be neglected compared
to l (this is satisfied more or less for cι < 10 mol m−3 in watery solutions of the typical ions, that
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Figure 4: Ionic excess potential µι of dissolved electrolytes. The µι-value of an electrolyte AaBbCc... that is dissociated

into the ions AzA , BzB , CzC ..., is composed additively from the contributions of the individual ions. Therefore we have

µι = (az2
A + bz2

B + cz2
C...)︸ ︷︷ ︸

z2

·µι0

√
cι

c0

according to the Debye-Hückel limiting law for small ional concentrations cι. As a result, µι/z2 should yield initially

coinciding curves with the initial slope µι0 for all electrolytes. The quantity is plotted as a function of
√

cι/c0. Experi-

mental values, averaged for different electrolytes of the same type, are displayed. Error bars denote the standard deviation.

The numbers show the number of electrolytes summarized in one bar. The reference value of the concentration is c0 =

1 kmol m−3. The limiting tangent and the solid curve have been calculated according to the Debye-Hückel equation.

For the solid curve, we chose d = l0.

means d ≈ 0.4 nm including hydration sheaths and l > 4 nm), we have2 (Figure 4):

µι =
−e F

8 π ∈ l0︸ ︷︷ ︸
µι0

·z2 ·
√

cι

c0
for d ¿ l . (Debye-Hückel limiting law)

Van der Waal’s gas

In order to explain the behavior of dense gases and their condensation, van der Waal’s gas model
is generally used because the physical assumptions can be made evident and the resulting equation
of state (p+an2/V 2) · (V −nb) = nRT is fairly simple, physically clear and more or less applicable
even to the condensate. On the other hand, calculating the constants a and b from the molecule

2For water at 298 K and 1 kmol m−3 as reference concentration c0, we have µι0 = −2.062 kJ mol−1. If one replaces

µι by the appropriate activity coefficient fι, and the ional concentration by the ionic strength Ic = cι/2, one obtains the

well-known equation lg fι = µι/RT ln 10 = −const. z2
√

Ic with const. = 0.51 mol−1/2 dm3/2 for water at 298 K. At

this point one should be aware that although this transformation brings us closer to the usual formulations, the general

relationships again start to become more complicated.

5



d

w
0

W 8

-w
d

r0

6

d = 4 dV r rp
3

dr

d

r

Figure 5: Interaction energy w of rigid, spherical gas particles with a diameter d influenced by dispersion forces. The

position of a particle is denoted by the location of its center. The energy is ilustrated

a) for a particle pair as a function of their distance r. The figure shows the case of the smallest distance, r = d, in which

the energy reaches its minimum −w0.

b) for a particle under the influence of all of its neighbors considered as uniformly distributed. The contribution of all

of the neighbors in a spherical shell with a radius r > d, thickness dr and volume dV , is the same. The particel in

consideration excludes all others from the gray zone (radius d).

properties is more difficult and is often omitted. Entropy and the chemically important chemical
potential µ are almost always ignored.

Contrary to the usual approach, we will start with µ and calculate the quantity directly from
van der Waal’s assumption about molecular interaction without referring to the equation of
state. As usual, we imagine the N gas particles as rigid, non-rotating and attracting spheres
having a diameter d, distributed in a container of volume V . A slight amount of particle exchange
with the environment is expressly allowed, for example as a result of weak diffusion through the
walls. If we presume that the attraction is based upon dispersion forces, we can use the London’s
formula

w(r) = −w0 ·
(

d

r

)6

for the energy of interaction w(r) between two particles as a function of their distance r (Figure
5). To calculate the average energy w̄ of an individual particle as a result of interaction with all its
neighbors, we imagine the gas particles to be distributed uniformly throughout the volume, leading
to a uniform density N/V . The number dN of neighboring particles, which are in a spherical shell
of thickness dr at a distance r from the center of the particle in question, is then given by dN =
N
V · 4 π r2 dr. Its contribution to w̄ is given by −w0 ·

(
d
r

)6
dN . Integration over the entire volume

where neighboring particles can be found, i.e., from the smallest possible distance r = d to the
container walls, which, in molecular dimensions is just about r = ∞, leads to the result:

w̄ =
∫ ∞

d

−w0 ·
(

d

r

)6

· N

V
4πr2dr = −4πw0d

6 N

V

[−1
3

r−3

]∞

d

=
−4 π

3
d3w0

N

V
.

Related to the amount of substance, which is just τ for a particle, w̄ yields the average molar
interaction energy

w̄

τ
=
−2 a n

V
where a =

2 π d3 w0

3 τ2
.

A particle occupies a spherical zone with a volume of 4 π
3 d3, from which it excludes other

particles, more precisely, the centers of other particles. Accordingly, N particles possess N such
zones with a total volume of N 4π

3 d3, in which no other particle can exist as long as the particle
density is so small that the zones do not overlap noticeably. Hence, the volume V appears to be
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reduced for each extra particle intruding from outside. In other words, the gas concentration is
correspondingly raised,

c∗ =
N τ

V −N 4π
3 d3

=
n

V − 2 n b
where b =

2 π d3

3 τ
.

The assumption that the particles may not be too densely packed here means that V À nb. c∗

stands for the concentration relevant for particle interaction with the environment and therefore
for the chemical potential. It must be inserted into the mass action formula. At the same time, if
we take into account the interaction energy calculated above according to the excitation formula,
we obtain

µ = µ0 − 2 a n

V
+ RT ln

n

(V − 2 n b)c0
for V À n b .

If one sets both a and b equal to zero, then the equation is transformed into the one for ideal
gases, µ = µ0 +RT ln(c/c0), where µ0 is the reference value of the potential for the corresponding
ideal gas. We can calculate it according to the formulas derived in Parts I and II. Because there is
no internal excitation for rigid, non-rotating spherical molecules (mass m), only the translational
contribution µ0 = ε/τ +RT ln(c0/ce) is to be considered along with a possible ”basic contribution”
ε/τ . Therefore we have ce = τ/λ3, where ce is the degeneracy concentration, and λ = h/

√
2 π m k T

denotes the quantum length.
At the moment we are concerned with another question, though. What is the pressure as a

result of the approach used above for the chemical potential? We can calculate it as we did for the
dilute gases in Part II, with the help of the relation (∂µ/∂V )T,n = −(∂p/∂n)V,T . Applied to the
equation above, we obtain,

(
∂p

∂n

)

V,T

= −
(

∂µ

∂V

)

T,n

= −2 a n

V 2
+

R T

V − 2 n b
≈ −2 a n

V 2
+

R T

V
·
(

1 +
2 n b

V

)

since µ0 is independent of V . The approximation 1
1−x ≈ 1 + x for x ¿ 1 was used in the last step

of the calculation. If we use the same approximation 1 + x ≈ 1
1−x , integration over n at fixed V

and T results in

p =
−a n2

V 2
+

n R T

V
·
(

1 +
n b

V

)
≈ −a n2

V 2
+

n R T

V − n b
.

Now we have van der Waal’s equation3, which we only need to rewrite into the usual form:

(
p +

a n2

V 2

)
(V − n b) = n R T and a =

2 π d3 w0

3 τ2
, b =

2 π d3

3 τ

3Only in the case of V À nb does the derived expression for the chemical potential yield exactly van der Waal’s

equation. One can slightly rewrite it, staying within the limits of validity, so that the relation is strict. In order to replace

V − 2 n b in the logarithmic term by the factor V − n b necessary for the van der Waals equation, we expand the

fraction there with V − n b = V (1 − x) where x = n b/V ¿ 1 and split off the term ln[(V − n b)/(V − 2 n b)] =

− ln[(1− x− x)/(1− x)] = − ln[1− x/(1− x)] ≈ x/(1− x) = n b/(V − n b):

µ = µ0 − 2 a n

V
+ R T ln

n

(V − 2 n b)c0
= µ0 − 2 a n

V
+ R T

[
ln

n

(V − n b)c0
+ ln

V − n b

V − 2 n b

]

≈ µ0 − 2 a n

V
+ R T

[
ln

n

(V − n b)c0
+

n b

V − n b

]
.

In order to test our results we form −(∂µ/∂V )n,T , on the one hand, and on the other hand (∂p/∂n)V,T , by use of van

der Waal’s equation, we obtain, as it should be, the same expression: −2 a n/V 2 + [R T/(V −n b)]·[1+n b/(V −n b)].
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Adsorption with interaction

If perceptible interactions between the adsorbed particles occur, then the surface may be divided
into uniform areas as far as possible. These have to be chosen of such a size that the energy of
interaction of the molecules adsorbed at the edges with those outside can be neglected compared to
the total energy of interaction on the inside. These areas, comprising z sites, take over the former
role of the independent individual sites. In the simplest case, areas with only two adsorption sites,
z = 2, have no noticeable interaction with the environment when the sites are pair-wise close to
each other and the pairs themselves are far enough apart from each other. Starting from an empty
area, we have 2z independent adsorption processes. For z = 2 this is:

ibinary bi

→ 00 0
+ B → B 01 1
+ B → B 10 1
+ 2 B → B B 11 2

We consider the sites of an area as numbered, n = 1, 2, 3, ... z. We number the occupation states
as well, with a number i = 0, 1, 2, ... (2z − 1) whose n-th digit is a 0 in z-digit binary syntax
ibinary, if the n-th site is empty. Otherwise it is 1. The occupation number bi, meaning the number
of adsorbed B-molecules in the i-th state, is then simply the cross sum of ibinary. In equilibrium,
we have

µ0,0 + R T lnΘ0︸ ︷︷ ︸
µ(empty area)

+ bi · [µ0,B + R T ln(c/c0)]︸ ︷︷ ︸
µ(B)

= µ0,i + R T lnΘi︸ ︷︷ ︸
µ(area in the i -th state)

for all i .

We subtract bi · µ0,B from both sides, divide by RT , form the power with and multiply by cbi
0 .

Since the reference value µ0,0 of the potential for the empty area vanishes, we have

Θ0 · cbi =

[
c0 · exp

(
µ0,i − bi µ0,B

bi R T

)

︸ ︷︷ ︸
ci (50%-concentration for

the i-th occupation state)

]bi

·Θi for all i 6= 0 .

As the value for the parameter ci=0 left undetermined here, we choose the reference concentration
c0. Except for c0, the parameters ci represent a kind of 50%-concentration for the respective
adsorption process. This means the concentration c for which the fraction Θi of areas in the i-th
occupation state would become 1

2 if the process being observed was happening alone. In this case,
we would have Θ0 = 1−Θi. As above in the case of Langmuir adsorption, this allows us to solve
the equation for Θi:

Θi =
(c/ci)bi

1 + (c/ci)bi
with Θi = 1/2 for c = ci .

Dividing the 2z equations by cbi
i and multiplying on the one hand by a factor of 1 and on the other

by the factor bi, and summing over all i, yields two relations,

Θ0 ·
∑

i

(
c

ci

)bi

=
∑

i

Θi = 1 , Θ0 ·
∑

i

bi ·
(

c

ci

)bi

=
∑

i

bi Θi = z Θ ,
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Figure 6: Adsorption isotherms for independent

pairs of identical adsorption sites. The figure

shows the degree of occupation Θ as a function

of the reduced concentration c/c01 for various

ratios c11/c01. c01 is the 50%-concentration for

a singly occupied pair of sites. c11 means the

corresponding value for double occupation. c11 <

c01 represents attracting and c11 > c01 repelling in-

teractions. c11 = c01 yields the Langmuir-isotherm.

from which, after removing Θ0, we obtain the degree of occupation Θ of the whole surface as a
function of the concentration c:

Θ =
1
z

∑

i

bi ·
(

c

ci

)bi
/ ∑

i

(
c

ci

)bi

. (adsorption equation)

Applied to the simplest case of z = 2 with two identical adsorption positions, i.e. c01 = c10, for z

= 2, the equation is (Figure 6):

Θ =
c/c01 + (c/c11)2

1 + 2c/c01 + (c/c11)2
.

General systems of interacting particles

The adsorption of interacting particles discussed in the last section lends itself to easy generalization
in that instead of particles distributed over a flat surface one can consider them distributed in
space. Whether or not the space is empty or filled with a material (perhaps a solvent) makes no
fundamental difference. In place of a two-dimensional area a three dimensional one, denoted by®


©
ª, appears. We can imagine it separated from the environment by an appropriate envelope.

This region represents the system being investigated, which exchanges the substance B with its
environment : ®


©
ª+ biB −→

®


©
ªbiB i

We consider the total of all possible occupation states
®


©
ªbiB i

of the system to be consecutively
numbered (number i). In a concrete case, to keep the math to a minimum, we will attempt to
get by with the smallest possible microscopic system. For the case of general equations, smallness
basically doesn’t matter so the systems can be macroscopic as well.

Because we are no longer interested in the form in which B exists in the environment, we only
assume that the chemical potential µ of B has a defined value. The requirement for the occupation
equilibrium is then

µ0,0 + R T lnΘ0︸ ︷︷ ︸
µ(empty system)

+ bi · µ = µ0,i + R T ln Θi︸ ︷︷ ︸
µ(system in the i -th state)

⇒ Θi = Θ0 · exp
(−µ0,i τ + µ ni

k T

)

for all i 6= 0, where ni = biτ denotes the amount of B in the i-th occupation state. Note that
µ0,0 ≡ 0. While the sum of all Θi results in 1, the sum of all niΘi gives us the total amount n of
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substance B in the system:

1 =
∑

i

Θi = Θ0

∑

i

exp
(−µ0,i τ + µ ni

k T

)

︸ ︷︷ ︸
Ξ

, n =
∑

i

ni Θi = Θ0

∑

i

ni exp
(−µ0,i τ + µ ni

k T

)

︸ ︷︷ ︸
k T · (∂Ξ/∂µ)T

Θi can be understood as the probability to find the system in its i-th occupation state for given µ and
T . n is correspondingly understood, as the expectation value of amount of B in the system. While
the ni are integer multiples of τ , n can be a fractional multiple. The amount of B has some scatter
about the expectation value, whereby the standard deviation is given by σ =

√∑
i Θi(ni − n)2.

σ is only of importance in microscopic systems. If one already has calculated the sum Ξ as a
function of µ and T (and, where applicable, of other variables such as the volume V of the system,
the amount of solvent nL, pressure p, etc.), then the calculation of the second sum is unnecessary
because it results from the first by taking the derivative with respect to µ. Given that Θ0 = Ξ−1,
as we see from the first of the equations above, and ∂ ln Ξ/∂µ = Ξ−1(∂Ξ/∂µ), we can thus express
n as follows:

n = kT

(
∂ ln Ξ
∂µ

)

T,...

where Ξ =
∑

i

exp
(−µ0,i τ + µ ni

kT

)
(*)

This equation describes the occupation of the region
®


©
ªwith the substance B similarly to how

an adsorption equation describes the occupation of a surface site.

Statistical entropy

If our empty system
®


©
ªrepresents a cavity with volume V , and if we classify an internal excitation

by rotation, vibration, etc. of a B-particle in the system as a new occupation state with its
own number i, then µ0,i τ is identical with the energy4 Ei(V, ...) of the system in its i-th state,
where the energy is dependent upon the volume V , and possibly upon further parameters. In this
case, Ξ =

∑
i exp[(−Ei + µni)/(kT )] corresponds to the grand partition function known from the

quantum statistics of open systems. The function Ξ(T, µ, V, ...) is noteworthy for fully describing
the system in thermodynamic equilibrium with its environment so that knowing this function
suffices to calculate all relevant quantities (energy E, amount of substance n, pressure p ... and the
quantities derived from them concentration c, compressibility χ, heat capacity C ...). This holds
not only for their expectation values, but for their standard deviation as well.

The necessary equations can be derived with little difficulty. Let us single out the expectation
value of the energy, for example, which we can calculate from Ξ(T, µ, V, ...) because of Θi =
Θ0 · exp[(−Ei + µ ni)/(kT )] = Ξ−1e... as follows:

E =
∑

i

Ei Θi =
1
Ξ

{∑

i

Ei e... − µ
∑

i

ni e...

︸ ︷︷ ︸
k T 2 · (∂Ξ/∂T )µ,V,...

+ µ
∑

i

ni e...

︸ ︷︷ ︸
k T · (∂Ξ/∂µ)T,V,...

}
=

k T 2

(
∂ ln Ξ
∂T

)

µ,V,...

+ µ n . (**)

4It is unecessary here to distinguish between the energy εi of a particle (or a microsystem of few particles) and the

energy Ei of the entire system, because the same formulas are valid for microsystems and for macrosystems.
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In order to arrive at the entropy, we calculate the increase of entropy while filling the empty (entropy
free) system

®


©
ªwith the substance B. We imagine slowly raising the chemical potential of B in

the environment from −∞ up to the desired end value µ. In doing so, all the other independent
variables T , V , ... should be kept constant. Using dE = TdS − pdV + µdn + ..., observing dV =
0, and performing the intermediate step dS = T−1[dE − µ dn], we obtain by applying equations
(*) and (**):

dS = T−1

[
kT 2

(
∂2 ln Ξ
∂T∂µ

)

V,...

dµ + ndµ

]
= k

[
T

(
∂2 ln Ξ
∂T∂µ

)

V,...

+
(

∂ ln Ξ
∂µ

)

T,V,...

]
dµ .

Finally, as a result of the integration over µ mentioned above

S = k

[
T

(
∂ ln Ξ
∂T

)

T,V,...

+ ln Ξ

]
.

Although this is a useful result, our actual goal is a more fundamental equation which we arrive
at if we introduce Ξ =

∑
i exp[(−Ei + µ ni)/(k T )] and exp[(−Ei + µ ni)/(k T )] = ΞΘi in the left

term of the expression above:

S = k

[
T Ξ−1

∑

i

(
−−Ei + µ ni

k T 2︸ ︷︷ ︸
ln(Ξ Θi)/T

)
exp

(−Ei + µ ni

k T

)

︸ ︷︷ ︸
Ξ Θi

+ ln Ξ

]
= k

[∑

i

Θi [− lnΘi − ln Ξ] + lnΞ

]
.

Since
∑

i Θi = 1, ln Ξ cancels so that we obtain the familiar equation for statistically defined
entropy with Θi as a probability:

S = −k
∑

i

Θi lnΘi . (Boltzmann-Shannon equation)

Review and outlook

The examples have shown that interactions between particles are no obstacle to our approach.
However, it can happen that due to their numerous interaction terms, the complexity of quantum
statistical calculations can easily become so great that an equation such as the one derived in
the last sections becomes useless. It then depends upon mathematical or physical skill to find
simplifications that can yield manageable equations without being too far off the mark.

There is another point worth mentioning. In the last sections it became clear that even fluctu-
ation phenomena lie within the range of our approach. This is in direct opposition to the general
view that phenomenological thermodynamics as a kind of sumarizing theory is insensitive towards
atomic details. And that, these effecets can be understood and described correctly only in the
context of a more comprehensiv statistical theory.

It is more difficult to determine whether or not the achievable results will live up to demands
which go beyond time-savings and reduction of the work needed for learning through formal sim-
plification. We are thinking of physical plausibility, compatibility with other views (e.g., statistics)
and completeness and elegance of description, etc. One can arrive at certain answers by check-
ing examples from various fields using the aforementioned criteria. Examples of this type will be
compiled in a further paper without valuation, so that readers can form their own judgement.

For now we will omit time-dependent phenomena because they – in the general view – are foreign
to thermodynamics and quantum statistics and require new tools. We shouldn’t let ourselves be
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discouraged by this type of argument from at least making a try at a solution, though. The theory
of the transition of states gives us examples from which to start. But, this topic is beyond the
scope of this work and may be addressed in a forthcoming article.
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